草薙の研究ログ

英語教育関係。でも最近は統計(特にR)ネタが中心。

モデルってことばが如何に重要か

最近,モデルってことばが思ったよりもすげえ重要だなって思うようになった。自分の分野(外国語教育)だとあまり聞かない用語だから,避けてたけど,これむしろ積極的に使ったほうがいいな。

モデルってのはモデル化したいものそのものじゃない。別にこの世に斉一性をもたらす,この世を統率している原理だとか,そんな中二病的なもんじゃない。

よくある例のように,たかしくんが一時間で5km歩くってのを時速5kmというモデルで表せるわけだけど,たかしくんが頑張って歩いている現象それ自体ではないし,たかしくんがそのルールに支配されているわけでもない。たまたま,それ以外は捨象シテヨシ!っていう条件下で,結果としてうまくいくってだけのこと。この,何なら捨象シテヨシか,そして何なら捨象ダメかって考えるかってのもすげえ重要なことだ。それは俺達の現実世界のさまざまな秩序とかに与えられている。帰結に何が求められるかってことでもある。

でも,特に応用分野とかでガリガリ研究していると,モデルと,そのモデルに表せられていることの区別がつかなくなってしまいがちだ。そして,なんならそのもの自体を生み出している世界とも区別できなくなってくる。

えーと,イカサマでない6面サイコロを振ってでる目は,a = 1, b = 6の離散一様分布でうまくモデル化できる。このとき,離散一様分布はモデル。でも,サイコロの目がでるという物理現象それ自体は,さまざまなこと,摩擦や物体の運動やその他,無限に近い現象の因果だと思う。たまたま,なんの目が出るか,という観点の上で,それらの無限に近い現象の因果とかが捨象シテヨシってだけのはなしだ。神様が離散一様分布の乱数を毎回振って出してくれてるわけではない。

そういうことなら当たり前じゃないか,ってひとは,大抵はよく勉強されていて,

因子分析は,ある集団とある観測変数のセットという条件下において,それらの観測間の構造を説明し得る,便宜的な数理モデルのひとつに過ぎない。 

 みたいな文言を読んでたりもする。

でも,実際に自分で因子分析をすると,それがなんか関心ある概念間の関係それ自体だと勇み足になってしまいがちだ。

多分,ことばが悪いんだよな。因子分析は,所詮は数理モデルにすぎないんだから,因子分析モデルといえばいい。

「因子分析は概念間の構造を解明する道具!」よりも「因子分析<モデル>,それは(得てしてクソみてーな)観測変数間の(よくわからん)構造を集約する便利な(だけの)数理モデルのひとつ」っていえば,変な誤解を避けられる。

平均差の有意性も似た問題がある。30点こっちのグループの方が上で有意でした。これは数理的には条件付き期待値がどうこうって程度の話。でも別に神様がその条件付き期待値を計算して現象発生させているわけでない。こっちのグループはAしたのか,よしテストの平均30点あがるように調整しよ,なんて神様はおそらくやっていない。

別になんでもいいけど,一般線形モデルでも,平均差のモデルとか,条件付き期待値のモデルでもいいんだけど,なんかモデルっていえば,そういう勇み足は減るのかな。

「平均差は有意!」とかっていうよりも「平均+30<モデル>」っていえば,変な推論は防げるのかな。

 

モデルっていえば,あくまでも(適当に人間が手前の脳みそで理解するために作った)モデルだってのがわかるから,聞いている,読んでいるひとだけじゃなくて,喋っている,書いているひとも頭クリアになるからいいんじゃないか。中身について主張していることと,実証したというものの齟齬にも,自分で気づけるようになる。