草薙の研究ログ

英語教育関係。でも最近は統計(特にR)ネタが中心。

モデルの中で何が捨象できるかを語らない科学

数理モデルというものは,その記述の仕方の形式性の割には,数理モデルということばに親しみを感じないほとんどのひとが思うより,本来結果主義的で効用主義的なものだ。

モデルは,もちろん現象それ自体ではないし,その現象を大幅に捨象していて,しかしそこから得られる予測や知見が有益だと見込まれているものだ。この「有益だ」という考え方は一部の学術分野にはないこともあるが。

人文社会系のほとんどの数理モデルは,世界が数字に支配されていて,その世界の斉一的な決定則を表すものだなんてことを意味しない。せいぜいが「観測がうまく当てはまる」,「うまい数理的な近似になっている」という程度の含意である。しかし,そのモデル(世界の決定則それ自体ではない)について考えることで,人が適切に意思決定をできたり,そして個人間の合意が得られ,判断の公共性が発生する(たとえばある種のエビデンスになる)というに考えられている。

 

たとえば,TOEICのスコアは大学が自前でやっている単語テストの成績から予測できるとする。

y = ax + b

という簡単なモデルを考えて,

TOEIC = 8.5×単語テストの得点 - 120

とか,そんなふうに。

このモデルは,それがうまくTOEICのスコアを予測できるとか,つまりこの現象のいい数理的な近似になっていれば,まあいいモデルだといえる。

 

ただし,このとき,TOEICは単語の力だけではないのだから,このモデルは世界の斉一的な決定則の記述として不完全だ!というのはちょっと勇み足だと思う。

TOEICは単語のテストだけではない!とか。

もっというなら,TOEICのときの部屋の温度をモデルに取り入れるべきかだとか,世界の斉一的な決定則を考えれば無限にそんな要因はありえる。

数理モデルを扱う人がもつ,結果主義というか,もっと大きくいってプラグマティズム的な考え方の下では,単にこのモデルはそれらを捨象しているのである。線形モデルなら,それら全部をひっくるめて誤差(残差)として考える。

 

ここで問題は,何が捨象できるかそして何を積極的に捨象するべきかということになる。

 

…外国語教育研究やその関連分野である第二言語習得研究が扱ってきた変数や現象は莫大であり,確かに複雑極まりない。もはや還元主義の傾向が強いテーマに関しては指数的に用語が増えていっていて,収拾付かない例もある。

だからこそ,なにが捨象できるか,そしてなにを捨象するべきか,という考えが今後重要になってくると思う。

そして個人的には,大局的に人間の意思決定や判断の合意形成や公共性の創出という点から見れば,捨象できるものはずっとずっと多いと思っている。

…世界の斉一的な決定則それ自体を考えるならば,むしろなにも捨象できないとも思っている。